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ABSTRACT 

An  infinite graph G is called s t r o n g l y  p e r f e c t  if each induced subgraph 

of G has a coloring (Ci :  i C I )  a n d  a clique meet ing each color Ci.  A 

conjecture of the first author and V. Korman is that a perfect graph with 

no infinite independent set is strongly perfect. We prove the conjecture for 

chordal graphs and for their complements .  

1. I n t r o d u c t i o n  

A (possibly infinite) graph G is called perfec t  if x(H) = w(H) for each induced 

subgraph H of G, where ~(H)  is the chromatic number of H and ~ ( H )  is the 

supremum of the sizes of cliques in H. (A c l ique  in this paper means a set of 

vertices, not necessarily maximal, which spans a complete subgraph.) For infinite 

graphs it is possible to define a stronger notion, in the spirit of [1, 5]: 

Definition 1.1: A graph G is s t r o n g l y  perfec t  if every induced subgraph H of 

G has a coloring (C~: i ¢ I) (meaning that the "colors" C~ are independent sets 

forming a partition of V(H)) and a clique If such that K N Ci ~ 0 for all i E I. 
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In the finite case perfectness clearly implies strong perfectness, but this is 

false, in general, for infinite graphs. To see this, take G to be the disjoint union 

of cliques Kn of size n (n < a;). But the result of Oellrich and Steffens [5] 

prompted the first author and V. Korman to make the following conjecture: 

CONJECTURE 1.2: If  G is perfect and contains no infinite independent set, then 

G is strongly perfect. 

Henceforth we shall call a graph with no infinite independent set n a r ro w .  The 

Oellrich-Steffens result can be formulated as follows: 

THEOREM 1.3: A narrow incomparability graph is strongly perfect. 

(G is an i n c o m p a r a b i l i t y  g r a p h  if there exists a poset P on V(G), such that 

(x, V) C E(G) if and only if x and y are incomparable in P. Theorem 1.3 is a 

"strong version" of Dilworth's theorem. It is proved in [5] for the countable case, 

but the same proof, using the theorem of [1] instead of its countable version, 

proves the full result.) 

The outstanding special case of Conjecture 1.2 is that of comparability graphs. 

(A c o m p a r a b i l i t y  g raph ,  excuse the circuitous definition, is the complement 

of an incomparability graph . . . .  ) 

In [3] a stronger conjecture than Conjecture 1.2 was suggested, and we would 

like to re-state it here. First, we introduce the following terminology: 

A h y p e r g r a p h  H is a pair (V = V(H),  E = E(H)),  where E is a set of 

finite subsets of V, such that U E = V. The elements of E are called "edges". 

A matching (i.e., a set of disjoint edges) in a hypergraph H is called s t r o n g l y  

m a x i m a l  if one cannot add to it k edges of H (k being a finite number) and 

delete fewer than k edges, and remain with a matching. 

An edg e  cover  of H is a set of edges whose union is V(H).  It is called 

s t r o n g l y  m i n i m a l  if one cannot delete k edges from it and add fewer than k 

and remain with an edge cover. 

CONJECTURE 1.4: 

(a) Every hypergraph contains a strongly maximal matching 

and 

(b) Every hypergraph contains a strongly minimal cover. 

Conjecture 1.2 follows from Conjecture 1.4(b) by a compactness argument 

used after applying Conjecture 1.4(b) to the hypergraph of independent sets of 
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the graph in Conjecture 1.2. 

There is no implication known between the two parts of the conjecture. Both 

parts are true for graphs [2], and thus Conjecture 1.2 is known for graphs G 

whose largest independent set is of size 2. 

If true, Conjecture 1.4 will probably be difficult to prove--even the proof for 

graphs uses heavy machinery. A more modest aim is to prove Conjecture 1.2 

for special classes of perfect graphs. The best known such classes, after those of 

comparabili ty and incomparability graphs, are those of chordal graphs and their 

complements. In this paper  we prove the conjecture for these two classes. Let us 

first recall the definition: 

Definition: A graph G is called c h o r d a l  if each cycle of length 4 or more in G 

contains a chord. 

The two theorems which will be proved in this paper  are: 

THEOREM 1.5: A narrow chordal graph is strongly perfect 

and: 

THEOREM 1.6: A narrow complement of a chordal graph is strongly perfect. 

Remark: The disjoint union of complete graphs of size n (n < w) shows that  

the narrowness condition is indeed necessary in Theorem 1.5, and the transitive 

closure of the infinite binary tree shows that  it is necessary in Theorem 1.6. 

Notation: Given a graph G and a subset A of V(G), we write G[A] for the 

subgraph of G induced by A, and G - A for G[V(G) \ A]. 

2. N a r r o w  c o m p l e m e n t s  of  c h o r d a l  g r a p h s  a r e  s t r o n g l y  p e r f e c t  

In this section we prove Theorem 1.6. Since an induced subgraph of a chordal 

graph is chordal, it suffices to prove the following: 

THEOREM 2.1: Let G be a chordal graph with no infinite clique. Then there 

exists a partition of V( G) into complete subgraphs (K~: i E I )  and an independent 

set C meeting all Ki. 

The proof will use the notion of t r e e  r e p r e s e n t a t i o n s .  A pair 

(T, (T, :  v E V)), where T is a tree and (T,: v E V) a collection of sub- 

trees of T, is called a t r e e  r e p r e s e n t a t i o n  of a graph G = (V,E)  if E = 
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{(u, v): V(T~) N V(T,)  ~ 0} (i.e. two vertices are connected in G if and only if 

the subtrees corresponding to them intersect). Our main  tool is: 

THEOREM 2.2 [4]: A chordal graph with no infinite clique has a tree represen- 

tation. 

Let 7- = (T, (Tv: v E V)) be a tree representat ion of a graph. Given a vertex 

x of T we write T~ -- {Tv: x • V(T~)}. 

Whenever  a tree representat ion T = (T, (T~: v • V)) is considered, we shall 

associate with it a vertex r = r(7-) of T, which will play the role of the "root" of 

T. The choice of r is almost arbitrary:  the only requirement we make is tha t  

(1.1) r E V(T,)  for some minimal subtree Tv, if such exists. 

("Minimality" here is with respect to containment.)  For any vertex x of T 

different from r we write p(x) for the vertex immediately preceding x in T, i.e. 

p(x) is adjacent to x and nearer to r than  x. 

A choice of a root  r for T induces a choice of a root  r(S) for every subtree S 

of T: (S) is the vertex of S nearest to r (possibly r(S) = r). 

Another  definition needed for the proof is: 

Definition 2.3: Let T be a rooted tree with root  r and let A C_ V(T)  \ { r } .  We 

write T -  A for the tree with root  r whose vertex set is V(T) \ A and whose edge 

set is defined by: (x, y) e E(T  - A) if x precedes y in T (i.e. the pa th  from r to 

y contains x) or vice versa, and all vertices on the pa th  between x and y (in T) 

belong to A. If  7- = (T, (Tv: v C V)) is a tree representation, we write 7- - A for 

the system (T - A, (Tv - ( A n  V(Tv)): v E V)). 

Proof of Theorem 2.1: Let 7- = (T, (T~: v c V)) be a tree representat ion of G. 

Since G has no infinite clique 7- does not contain an infinite descending sequence 

of subtrees, and hence we have: 

ASSERTION 2.4: Every T, contains a minimal (with respect to containment) 

subtree T~. 

In terms of 7", what  Theorem 2.1 says is tha t  there exists a subset Y of V and 

a choice of a vertex Vy E V(Ty) for each y E Y such tha t  the trees Ty, y C Y 

are vertex disjoint, and the set {vy: y E Y} meets all trees Tv. In fact, the task 

is simplified by the fact tha t  a choice can be made in which vy = r(Ty) for each 

y E Y .  
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The first step is to get rid of "redundancies" in T,  which is done as follows. 

We define inductively subsets Ue of V and subsets Ae of V(T).  Let Ao = Uo = 

0. Assume that  AS, UZ have been defined for /~ < a (where a _> 1). Let 

Ae = U{Az: ~ < (~}, Ue = U { u z : / )  < (~}. Let 7e = (T, (T, :  v E V \ Ue)) - 

Ae. Define Ue to be the set of vertices u E V \ U~ such that  V(T,)  \ A ~  C_ 

V(T~) \ A~ for some v ~ u, v E V \ / J e .  (That  is, Us is the set of indices of non- 

minimal trees in the system T~.) Let As be the set of vertices x E V(T)  \ A~ such 

that  x ~ r(T,) for all v E V \ U~ \ U~. (Note that  given a tree representation 

(R, (Rz: z E Z)) with root r, the vertices x ¢ r which are not roots of any tree 

Rz are precisely those vertices x for which ~ x  C_ T~p(x). ) Note also that  by (1.1) 

and Assertion 2.4, r ~ Ae. 

The definition terminates when Uo = 0 for some 0 > 1 (this must clearly hap- 

pen for some 0 < IVI+). Let then To be defined as above and write: 

To = Tt = (R, (Rz: z E Z)). Let H be the graph represented by To. 

ASSERTION 2.5: (a) Every tree Rz is minimal with respect to containment, and 

(b) Every vertex in R is a root of some R~. 

Proof: Part  (a) is clear, since Ue = 0. For the proof of (b) assume first that  

= p + I. Then To is obtained by deleting all non-roots (vertices in Ap) from 

T - Ap in the tree representation (T, (T~: v E V \ / ) 0 ) )  - Ap, and hence each 

vertex in T - A0 is a root in To. For 0 limit, since a vertex can be a root of 

only finitely many trees, each non-root x in To must have been a non-root in 

(T, (T.: v E V \ ~'e+l)) - Ae for some a < 0, and then x E A~, i.e. x ~ V(R).  

We first prove the desired result for 7~: 

ASSERTION 2.6: There exists a subset Y of Z such that the trees Ry, y E Y are 

vertex-disjoint, and the set {r(Ry): y E Y} meets all trees R~. 

Proof By (1.1) and Assertion 2.4, r = r(Ryo) for some Y0 E Z. We choose 

inductively vertices Ye as follows. Assume that  a > 0 and that  (YZ:/~ < a)  have 

been chosen. Let W~ = ~ {Y(Ryp): p < (~}. If We = V(R)  then stop the process 

of definition, otherwise choose any vertex t E V(R) \ W~ such that  p(t) E We. 

Let Ye be such that  r(Vy) = t (such Ye exists, by Assertion 2.5(b)). 

The process must terminate at some ordinal ( < IVI +. Let Y = 

{Ye: c~ < (}. By the choice of the ye, the trees Ty, y E Y are disjoint. The 

way Y is constructed implies that  We = V(R).  Let z E Z. Then r(R~) E V(Ry) 

for some y E Y. I f z  ~ y then, by Assertion 2.5(a), V(Rz)  ~ V(Ry). Hence, there 
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exists a vertex x E V(Rz) \ V(Ry) such that  p(x) E V(Ry). Then x E V(R~) 

for some u E Y, and since V(R~) N V(Ry) = 0, there holds x -- r(R~). Thus, Rz 

meets {r(y): y E Y}, as required. 

Since V(Rv) c_ V(Ru) for u ~ v, in particular V(Rv) ~ V(R~), and hence for 

each y E Y there exists a unique v = v(y) E V such that  Ry = T, - A0. Let 

W = {v(y): y E Y}. The proof of Theorem 2.1 will be complete if we prove: 

ASSERTION 2.7: 

(a) The trees Tw, w E W, are disjoint. 

(b) Each T,, v E V, contains r(Tw) for some w E W. 

Proo~ (a) Let u ,v  E W, u ~ v. I f V ( T ~ ) M V ( T ~ )  ~ ¢, then either r(T~) E 

V(Tv) or r(T~) E V(T~), say r(Tu) E V(Tv). Since u E W, we have r(T~) q~ .4e. 

But then r(T~) E V(T~ - .4o) n V(T,  - Ae), contradicting the disjointness of the 

trees Ry, y E Y. 

(b) Let v E V. If v E W then we are done. Otherwise, there exists a l  such 

that  v E Us1. Then there exists ul E V \ U s l + I  such that  V ( T ~ ) \ A s ~  C 

V(T,)  "..4s~. Since, by the definition of the sets As, r(T~) ~ A ~ ,  we have 

r(T~)  E V(T~). If ul E W then, again, we are done. If not, then there exists 

a2 > a l  such that  ul E Us2. This means that  there exists u2 E V \ U s ~ + I  

such that  V(T~)  \ As~ C_ V(T~ ) \ ,7t~ 2 . By the choice of the sets As, we have 

r(T~2) ¢ As2, and hence, r(T~2) E V(T~)  \ As~ C_ V(T,) \ As~. Continuing in 

this way, we obtain a sequence of subtrees T~ and ordinals ai  (where u0 -- v 

and a0 = 0) such that  for all i < j there holds r(T~) E V(T~j)" . f ts j .  This 

means that  the vertices ui form a clique in G, and hence, by the assumption on 

G, that  the sequence u~ is finite. Let uk be the last element in the sequence. 

Then uk E W and r(T~k) E V(T~), which proves (b). 

3. N a r r o w  c h o r d a l  g r a p h s  a r e  s t r o n g l y  perfect 

The main tool in the proof of Theorem 1.5, as in the finite case, is the following 

lemma: 

LEMMA 3.1: A minimal cut in a chordal graph is a clique. 

(A c u t  is a set of vertices whose deletion makes the graph disconnected.) 

The proof of the lemma is the same as that  of its finite version (see e.g. in 

Berge's book Graphs and Hypergraphs, Chapter 16. The lemma is originally due 

to Hajnal  and Suranyi). 
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Another result which we shall need is: 

THEOREM 3.2: The complement of a bipartite graph is strongly perfect. 

This follows from Theorem 1.3, since a bipartite graph with sides A, B is a 

comparabili ty graph, upon defining x > y if x E A, y E B and (x, y) C E. 

Definition 3.3: A t r e e - e x p a n s i o n  of a graph G is a tree T with a root r, 

together with a choice of a subset Xv of V(G) for every vertex v of T and a 

clique C, in G[X,] for every non-leaf vertex v of T, which satisfy the following 

conditions: 

(1) Xr = V(G); 

(2) If {u~: i e I} is the set of sons of v in T, then X~, = C, U D~, where D~ is 

the union of certain connected components of G[X,] - C,, D~ n Dj = 0 for 

i C j  a n d U { D ~ : i E I } = X v \ C , .  

(3) G[Xv] is the complement of a biparti te graph (i.e., Xv is the union of two 

cliques) for every leaf v of T. 

If G has a finite tree expansion then it is called f in i te ly  t r e e  e x p a n d i b l e  

(f.t.e.). 

Definition 3.4: A cut C s e p a r a t e s  two cliques A and B if there exist two points, 

one in A and the other in B, which are separated by C. 

Del~nition 3.5: Let A, C be cliques. We say that  A is C- soc iab le  if either 

(a) C is a cut, and G - C has more than two connected components, or 

(b) the component of G - C meeting A is not contained in A. (Note that  in (b) 

we do not insist that  C is a cu t - - t he  component in question may be the whole 

graph G - C.) 

LEMMA 3.6: Let G be a non-f.t.e, chordal graph and let A,B be cliques in G 

which are not cuts. Then there exists a clique C such that either 

(1) C separates A from B and both A and B are C-sociable 

o r  

(2) G - C has a component which does not meet A U B. 

Proof: If A u B is a clique then take C = A U B. If not, then choose x E A and 

y E B which are not connected and let D be a minimal cut separating x from y. 

If (1) fails for D then, say, A is not D-sociable. Let l )  be the set of clique-cuts 

D separating A from B and for which A is not D-sociable. 
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ASSERTION 3.6A: I f  no clique C satisfies (2), then there exists D E 72 for which 

A (1 D is minimal. 

Proof  of  the assertion: By Zorn's Lemma, it suffices to show that  if (D~: c~ < 0) 

is a sequence of cliques in l? such that  (D~ n A: a < 0) is strictly descending 

(i.e., D~ C?A C D ~ n A  whenever a > /3), then there exists F E l? with 

F n A = n ~ < 0  D ~ n A .  

Let a > /3. C h o o s e y  E ( D ~ \ D ~ ) n A .  Every v e r t e x u  E ( D ~ \ D ~ ) \ A  

is connected to v, and since D~ separates A from B, it follows that  D~ \ A 

separates u from B. Thus, D~ \ A separates (Dz "- D~) \ A from B. 

Let F1 = f'l~<0 D~ n A and let / :2 be the set of vertices x ¢ A which belong 

eventually to all cliques D~ (i.e., there exists /3 < 0 such that  z E D~ for all 

_>/)). Finally, let F = F1 U/'2. (If 0 is a successor ordinal/3 + 1 then, clearly, 

F = DZ.) Clearly, F is a clique. We shall show that  F E 72. 

SUB-ASSERTION: Let y E V " - (AUF) .  I f  D~ separates A from y for all a (where 

possibly y belongs to D) then so does F. 

Proof of the sub-assertion: Let x ~ A \ F. Let P be a path from x to y, and 

let z be the last vertex on P (starting from x) which belongs to some D- r Let 

> 3'. Take v E (D-y \ D~) N A. Since D6 separates v from y, it must contain 

some vertex on P between z and y (including endpoints). But by the choice of z 

this means that  z 6 D~. Thus, z E D~ for all 6 > 3', meaning that  z E F. 

Two corollaries follow from the sub-assertion: 

(i) The component of G - F meeting A is contained in A; 

(ii) If F ~) B then F separates A from B. 

If F _D B then, by (i) and the fact that  G is not f.t.e., G - F has a component 

which misses A (and, of course, also B). But this means that  F satisfies (2), a 

contradiction. 

Thus F ~) B. By (i) and (ii), F belongs then to 72. This proves the assertion. 

Let us return now to the proof of the lemma. Let D be as in the assertion. If 

D U B is a clique (in particular, if D _D B), then, since A is not D-sociable, and 

G is not f.t.e., G - (D U B) must have a component missing A, and then (2) is 

satisfied. We may therefore assume that  D U B is not a clique. 

Let H be the component of G - D which meets B, and let d = G[V(H)  u D]. 

Let I be a clique separating D from B in G. Suppose that  A is not /-sociable. 

Then I E :D, and by the minimality property of D this implies that  I n A  = DORA. 
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But I separates some vertex x C D \ I from B, and by the above x ~ A. Thus x 

either belongs to a component of G - I not meeting A tO B, or it belongs to the 

component meeting A. In either case A is/-sociable.  By the negation assumption 

on (1) B is not / -sociable .  

If T is a clique in G such that  (~ - T has a component not meeting B W D, 

then G - T has a component not meeting A to B. Hence, replacing G by G, A by 

B and B by D, we may apply Assertion 3.63. 

Let tC be the set of clique-cuts K in G separating B from D, and for which B 

is not K-sociable. Note that  I C tO, and thus tC # 0. By Assertion 3.63 there 

exists K C tC for which K n B is minimal. 

Let L be the component of O - K meeting D, and let G* = G[V(L) 0 K]. If 

K to D is a clique, then G - (K tO D) has a component not meeting A tO B, or 

else (by the non-sociability of A and B with respect to D and K,  respectively) 

G would be f.t.e. But this means that  (2) holds, and thus we may assume that  

K @ D is not a clique. Let M be a clique in G* which separates K from D. Then 

M separates A from B in G. By the minimality properties of K and D it follows 

(as before) that  A and B are both M-sociable, and thus M satisfies (1). 

THEOREM 3.7: A narrow chordal graph is finitely tree expandible. 

Proof" Suppose that  G is not f.t.e. We shall construct a sequence Gi (i < co) of 

non-f.t.e, graphs, G~+I being an induced subgraph of Gi • The graphs G~ (i _> 1) 

will be divided into two types, "free" and "besieged". In a free G~ there will be 

chosen a clique Ai, and in a besieged Gi two cliques will be chosen, Ai and Bi. 

These will be chosen inductively so that  

(a) If Gi is free then Ai separates V(G~) ". A~ from V(G) ". V(Gi). 

(b) If Gi is besieged then Ai U Bi separates V(Gi)".(Ai tO Bi) from 

V(G) ". V(Gi), and 

(c) No Ai or Bi is a cut in Gi. 

For each i we shall also define a set Zi of vertices. 

Let Go = G. Since G is not f.t.e, there exists in G a clique-cut Co. Since G is 

narrow, G - Co has only finitely many connected components, and hence, for 

at least one of them, call it D, the graph GI = G[Co tO V(D)] is not f.t.e. We 

define G1 as free, and let A1 = Co, Z1 = V(G) \ V(G1). 

Assume now that  Gi, as well as A~ (and Bi, if Gi is besieged) are defined. 

If  Gi is free then, since it is not f.t.e., V(Gi ) \  Ai is not a clique. Choose 
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x , y  E V ( G i ) \  Ai which are not connected, and a minimal cut C separating 

them. Choose a component D of Gi - C such that  Gi[V(D) U C] is not f.t.e., 

and let G~+I = G~[V(D) U C]. If D meets A~ then define G~+I as besieged and 

let Ai+l = Ai and Bi+l = C. If V(D) n Ai = 0 define Gi+l as free and let 

Ai+l = C. By the choice of x, y and D there exists a connected component F of 

Gi - C different from D which contains a point outside V(Ai)  U V(C).  Define 

Zi+l = V(F) "- (V(Ai) U V(C)). 
Assume that  G~ is besieged. Apply Lemma 3.6 to Gi, Ai and Bi, and let C be 

a clique as in the lemma. If case (1) occurs, choose a component D of Gi - C 

for which G[V(D) u C] is not f.t.e., let G~+I = G[V(D) u C] and A~+I = C. Let 

B~+I = Ai if D meets Ai, Bi+I = Bi if D meets Bi (and let Gi+I be besieged 

in either case), and define G i + l  as  free if D N (Ai  u B i )  = 0. In all these cases 

let Zi+l = V(F)  ",(V(D) u Ai U Bi) for some component F of Gi - C which is 

different from D and for which this set is non-empty (the existence of such F 

follows from the C-sociability of Ai and Bi). 

Suppose next that  case (2) occurs. Let F be a component of G -  C not meeting 

A U B .  Let G i +  1 = GI[V(F)UC], define Gi+l as free, and let Ai+l = C, Zi+l = 

0. 

Properties (a), (b) and (c) (mentioned at the beginning of this proof) are easily 

shown inductively. By (a), (b) and the choice of the sets Zi, points from different 

Zi 's  are not connected. Note that  Zi = 0 only when G i + I  is free, in which case 

Zi+l ¢ 0. Hence Zi ¢ 0 infinitely often, implying the existence of an infinite 

independent set. 

Proof of Theorem 1.6: Let G be a narrow chordal graph. By Theorem 3.7 it 

has a finite tree expansion, for which we shall use the notation of Definition 3.3 

(i.e., a tree T, sets Xv and cliques Cv). The proof will proceed by induction on 

IV(T)I. If T consists of a single vertex, then G is complete and the theorem is 

obvious. So, assume that  IV(T)[ > 1, and let v be a leaf of T. Let X = Xv 

and Y = Xv \ C ~ ,  where u is the father o f v .  The graph G'  = G - Y  has a 

tree expansion whose tree is T -  {v}. By the induction hypothesis there exists a 

decomposition of G ' into independent sets Ij (j E J) and a clique K in G' which 

meets all I j .  

Let J1 = {j E J : I j N X \ Y  ¢ 0} and J2 = J \ J 1 .  Consider the following 

cases: 

Case I. IYl _< IJ~l. Let f :  Y -~ J2 be an injection. For each j E f[Y] let 
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lj = /~ u {f-l(j)}, and for j e J \ f [ Y ]  let I~ = / j .  Since all neighbors of 

vertices f rom Y belong to X ,  the sets I j  are independent ,  their  union is V and, 

of course, they all meet  K.  

CaseII. IYI > I J21. Let  F be a subset  of Y of cardinal i ty  J2, and let g: F ---* J2 

be a bijection. Let I~ = Ij U { g - l ( j ) }  for each j e J2 and 1~ = Ij for j e J1. To 

the sys tem I}, j E J ,  add all singletons {y}, y E Y \ F .  The  result ing sys tem 

of independent  sets covers V, and it has a clique which meets  all its members ,  

namely  X .  
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